
110 

6. BABESHKO V.A., GLUSHKOV E.V. and GLUSHKOVA N.V., On the problem of dynamic contact problems 
in arbitrary domains, Izv. Akad. Nauk SSSR, Mekhan. Tverd. Tela, No.3, 1978. 

7. BABESHKO V.A., GLUSHKOV E.V. and GLUSHKOVA N.V., On singularities at angular points of 
three-dimensional stamps in contact problems, Dokl. Akad. Nauk SSSR, Vo1.257. No.2. 1981. 

8. GLUSHKOV E.V. and GLUSHKOV N.V., Plane-problem of 
Kavkaz. Nauch. Tsentra Vysshei Shkoly. Estestv. 

9. VOROVICH I-I., Resonance properties of an elastic 
SSSR, Vo1.245, No.5, 1979. 

PMM U.S.S.R.,Vol.49,No.l,pp.l10-116,1985 
Printed in Great Britain 

STABILITY OF ANNULAR PLATES OF INHOMOGENEOUSLY 

D.M. ZHUKOVITSKII 

stamp vibrations on a layer, .IZ". Se".- 
Nauk, No.1, 1979. 
inhomogeneous strip, Dokl. Akad. Nauk 

Translated by M.D.F. 

0021-8928/85 $10.00+0.00 
01986 Pergamon Press Ltd. 

AGEING VISCOELASTIC MATERIAL* 

A thin-plate bending equation in a polar coordinate system is derived for 
an inhomogeneously ageing material using creep theory. This equation is 
used to prove the sufficient condition forthe stability of annular plates 
by an energy method. The case of rigid clamping of both plate edges and 
compressive forces of dissimilar intensities along these edges is examined. 
Stresses in the plane of the plate are estimated, whereupon a bound is 
obtained on the compressible force in explicite form. An extension is made 
to other kinds of plate support. 

Equations for the deflection and sufficient conditions for the 
stability of inhomogeneously ageing viscoelastic rods were obtained 
earlier in the one-dimensional case /l/. 

1. Formulation of the problem. The strain of an annular plate of constant thick- 
ness h and radii R, and R (R,< R) fabricated from an inhomogeneously ageing viscoelastic 
material is considered. We introduce a cylindrical system of coordinates &ms with origin 
at the centre of the middle plane of the plate in the undeformed state and the 0s axis 
perpendicular to this plane. 

we assume the modulus of instantaneous elastic strain E and Poisson's ratio v oftheplate 
material to be constant and a load consisting of a transverse distributed load of intensity 

q (r, cF) and compressive forces of intensity p,, and p on the inner and outer edges of the 
plate, respectively, to be applied to the plate at the time t=o. We let p(r,q) denote 
the growth of an element of viscoelastic plate material in the neighbourhood of a point with 
the coordinates r,cp at the time of application of an external load, and L is an operator 
governing the ageing properties of the material, i.e., /l/ 

where L (t, z) is the creep kernel. The inverse operator to I + L is denoted by 1 -_N: I- 

N = (I + L)-‘, where the operator N has the same form as the operator L and governs the 
relaxation property of the material; the integrand N 0, 4 is called the relaxation kernel. 

Let the following properties of the creep and relaxation kernels be satisfied. 
lo. Functions L, (t, r), X, (t, z) exist such that for any (r, cp) E Ii?,, RI x [0,2 nl, t E IO, tl 

the inequalities 

are satisfied. 

30. A function N,(t, T) exists for all s>U such that starting at a certain time 

to = to W > 0 for all t>r>s to 

*Prikl.Matem.l~ekhan.,49,1,148-155,1985 



111 

max,,cvIN(t+P(t3 cp)q r+P(rv cp))-No& t)Idt<& 
1. 

We let N,'denote the operator generated by the function N,(t,r) and L, the correspond- 

ing operator determined from the relationship I - No = (I + Lo)-‘. 
The Liapunov stability of a plane in an infinite time interval is that small perturbations 

of the initial plane state result in small values of the deflection w(t,r,cp). 

Definition. Let w (t, r, cp) be the deflection of the plate middle surface, and P (rr CF) 
the transverse load acting on it. The plate is called stable if for any E> 0 there is a 

6 = 6 (e) > 0 such that if only sup0 1 q(r, 9) I< 6, then supt maxn lw(t, r, cp) ) ( E where Q is 

the domain of coordinate variation. 
We determine the sufficient conditions for stability of the plate under consideration, 

for which both edges are rigidly clamped. To do this, we first derive an equation for the 
deflection w. Later we estimate the deflection w by assuming the problem of determining 
the stresses in the plate to be solved in terms of the compressive forces p,,,p. On the 
basis of this estimate we obtain the desired conditions. By deriving a constraint on the 
norm of the stresses in terms of pO,p and using these conditions we obtain the critical 
value for the compressive forces. 

2. Equation for plate deflection. Let c,,eyrurs be the stress components, and 

E,, sy, aV4 the strain components in the system of polar coordinates. We denote the partial 
derivatives by the symbol &., where the subscript shows with respect to which variable these 
derivatives are taken (k = r, cp). The rheological relationships for the material described 
can be obtained in the form /l/ 

(J, = IEl(1 - vz)l (I - N) (e, + 1.~), ~,y = lE4.2 + 241 (Z - (2.1) 

A') E,v 
(T B = IE/(l - v2)l (I - N) (Ed + "E,) 

The strains are expressed in terms of the deflection w and the distance z between points 
of the plate and its middle surface as follows /2, 3/: 

E, = --28,,2W, Erri = -228, (r-‘&W) (2.2) 
& 6I= -2 (r-9, w + '-v""*w) 

If h is the thickness of the plate, then the bending moments .41,,MV and the torque M,, 
will be 

M,= "s' 
h.2 

U,~Z dz (2.3) 
--h ‘1 

o,z dz, M, = _%,Q qz dz, Al,, = “s’ 
-h/2 

In addition to the transverse forces, compressibe forces will also act on the plate in 
the case under consideration. The stresses originating here in the plane of the plate will 
produce an "additional" transverse force. Using the equilibrium equation for a flat plate, 
we can show /4, 5/ that this force (we denote it by F(o',u)) is described by the expression 

F (co, w) = h [s,(u,0i3,u1) + 6, (O,~Or-Y&w) 3 ~,er-lbw f (2.4) 

r-16, (u~~~G,w) + r-16,(o,“r-16,w) + ~,~‘r-*bwl 

We multiply all the relations (2.1) by z and integrate with respect to z between -h/2 
and $-h/2. Taking account of (2.2) and (2.3), WE obtain 

M, = -D (I - N) m,, m, = S,,‘w + vr-16rw + vr-26,,zw (2.5) 
M, = -D (I - N) mp, m, = v6,,2w + FYi,w + r-26,,2w 
M,, = -D (Z - N) rnrO, mrp = (1 - v) (r-V,,*w - r-*&w) 
D = Eh* [I2 (1 - v*)]-’ 

where D is the cylindrical stiffness of the plate. 
The equilibrium equations of an element of a circular plate will be /2/: 
for the moments 

6, PM,) + 6,M,, -M, - rQr = 0 
6, W,,) + 6,113, + M,, - rQq = 0 

for the vertical projections of forces 

6 (rQ,) + %Q, + r Iq b, (P) + F be, w)l = 0 

Eliminating the transverse forces Q, and Q, from these equations, we obtain the 
equilibrium equation in terms of moments 
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6,,=M, + 2r”b,M, + 2r-16,zM,, - r-%&l, + 

2r-KM, + r-‘&,‘M, + q (r, cp) + F (o’, w) = o 

We substitute the expression (2.5) here. Extracting components for the identity operator 
I we obtain 

DAAw + DG (-IV, w) = q (r, 9,) + F (o”, w) (2.6) 
G(--N,w) = S,,l(-Nm,)+ 2~%,(--Nm,) + 2r-%,*(-Nm,) + 

2F'6, (-Nm,) - r-%, (-NmJ + r-a&qvpa (-NW) 

(A is the Laplace operator in polar coordinates). 

3. Estimate of the deflection w(t,r,p). From the relationship between the creep 
and relaxation operators we obtain 

-No = (I + Lo)_' - z = - (I + LJlJ&, 
-N = (NO-N) -NO= (No -N)- (Z + LO)-%, 

Substituting the latter expression for __N into (2.6), we will have 

DAAw + D (1 + .&I) G (NO - N, w) = U + J% Lq (r, cp) + F (o”, w)l (3.1) 

The rigid clamping of the plate edges will yield boundary conditions for the deflection 
W as 

w (t, r, (p) = 6,w(t, r, cp) = 0 when r = Ro, R; Vt > 0, q E 0 (3.2) 

The action of the compressive forces is written analytically in the form 

a," (t, R,, cp) = -_po, c," (t, R, cp) = -P (3.3) 

Go 0, Ro, 9) = (JreO (t, l?, cp) = 0, vt > 0, cp E Q 

We will assume that an estimate of the stress tensor (7' is known from (2.4) in the norm 
under condition (3.3) i.e., an estimate of the quantity 

1) 0~11~ = sj (u;~ + 2u,"* + umo5) do (3.4) 

Here and henceforth, the double integral is understood to be integration over the plane 
of the undeformed plane in polar coordinates, i.e., over r between R. and R and over cp 
between 0 and 2~; do = r&d+ 

We multiply (3.1) by w(t, r,rp) and integrate by parts. Because of (3.2) and the ccn- 
tinuity and uniqueness in q for the deflection function w((t, r, cp) and all its necessary 
derivatives, the integrals originating along the boundary vanish. We finally have 

si (Aw)ldo = (I A L,) il (n; - N,) (\V, WJ do + (3.5) 

v (I + L,)js (-V - ,V,) (V', W,) do $ hD-r (I + LJx 

J[ [(-o,")G,wS,r, + (--(~~~~)(6,wr-'b,w, i r-'b,w&w& + 

(--o,") r-*&w&w,1 do + D-’ (I + LJls wqdo 

W = (6,,*w, 1/2r-16,,2w - Jr%-%,w, r-Y&w + r-*6,,*w) 

w = ZL’ (t, r, cp), WI = w (7, r, (P) 

w, E w (T), w* is a vector with components of the vector W, taken in reverse order and with 
a minus sign for the second one, and (W, W,) is the scalar product (i = 1, 2). 

Let j i\‘i denote the modulus of the vector, )[w)[' the integral of w squared withrespect 

to Q, II UJ IV the integral of the sum of the squares of the i-th derivatives (i = 1,2), and I, 

is the j-th component of the right side of (3.5) taken in absolute value (j = 1, 2, 3, 4). 
We will estimate the right side of (3.5). To do this we use the following inequalities: 

Cauchy 1 (W, WJ/ < 1 W 1 IWi (, Cauchy-Bunyakovskii 1 (w, w&I .<I] wIltljwl/12 C/6/, p.45 and 135) I 

Bernshtein II w III hill ~~11 c/7/, p.391, Friedrichs-Poincarg Ilwll~< C (Q)IlWl111 (/a/, p.62) I 

written in the polar coordinate system, and also the inequalities 

-2 (r-'B,yzu: - r-*f&w) (r-16,,2~, - r-%,w,) < 

E yY&*u. - r-%5&)* + E-1 (F’6,2w, - ‘-vjqw*)* 

b,*w (r-‘&w, t r-26u,2w,) : ‘/,E (6,,2w)2 + (2~)‘~ (r-r&w, + 
r-*6",%,)2 

(r-‘&W + r-26qv2w)6rr2wl C< llpe (r-‘&w + r-‘6,,pw)2 + 

(2&)-l @,,?w)* 
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(3.6) 

Separating the integral with respect to time into two (from 0 to to and from to to t), 
and using the properties 10-30, we obtain the estimate 

I, < II Aw II (1 + I -hi I) it I N, I + I No I) II 21, II + eo II 21 III 

I, < E II Aw II1 ‘/,v (1 + I Lo I) (I N, I + I No I) + 

v (2P (1 -I- I Lo I) [( I N, I + I No 1) II 2% II * + eo II 21 II ‘I 
4 = SupT I w (T, rr cp) I 

Similarly, fol:owingtheMikhlink'sreasoning (/9/, p.185) we have 

I, < k 1 a0 1s (2DW’ (1 + ) Lo I) 1) Aw )I2 + k \ a” 1s (2Dh)-’ (1 + 1 Lo 1) 1) Aw, 11’ 

Here 

h = inf, J"l wAAwdo {js i(8,w)’ -I- (r-‘6,~)*l~do)-“~~ 

I&la =sup,IIu"~~,O,<7~;t 

Finally, after double application of the Friedrichs-Poincarg inequality we obtain 

1, < sC (Q) (20) (1 + i LO I) II AwlI* + (2DP (1 + I Lo I) I/ q II * 

The constant C(8) depends only on the domain over which integration is taken. There 
is no sense in writing it down explicitly, mainly, it is a bounded constant. Because of e 
the value of this same term can be made as small as desired. We discuss below the selection 
of e and e. in the estimate I,. 

Substituting the estimates obtained for the integrals I, into (3.51, we have 

A II Aw 11% - B 11 Aw 11 - C < 0 
A=l - k I (I0 Is ww-’ (1 + I Lo I) - 

e (1 + I L, I) W,v (I N, I + I No I) + C (‘4 VW, 
B = (1 + I Lo I) [(I .v, I + I No I) II & I + eo II -G II I 
C = h l d’ lS (2Dh)-’ (I 4 Lo ) 11 Awl llz + (2De)-1 (1 + 

I LO I) II q II* + v CW1 (1 + I Lo I) ItI N, I + 

(3.7) 

I No 1) II & II + co II& III 

The constants e and e. are selected in such a manner 
the expressions A,B and C were determined by terms that 

Let k~u”]s(l+/Lo~)iD=a. If I-a/(Zh)>O, i.e. 

11 Aw 11 -.< B/A + (CIA)“! 

that the magnitudes and signs of 
do not contain e and so. 
A >0, then we have from (3.7) 

(3.8) 

According to the Bernshtein inequality /7/ we obtain II&II< sup,]lA~~~~~ for Z,. Then 
taking account of the inequality (a + b)‘/* ,< a’/* + b% for a, b > 0, we have 

BI.4 G (1 + ) Lo I) (I N, I -i I No WA II .% II + eo (1 + 

I Lo V-4 sup, II Am II 
(GA)‘/* z Lal(2hA) + eOv (1 + 1 LO l)/(ZeA)l’~‘* sup, jl Aq (1 + 

[v (1 + I Lo I) (I ATI I + I A’, IN2eAW* II Z,, II + [(I -k 
I Lo I)G’AWl’ia II P II 

or introducing the notation 

BIA < Ca II &, II + Ml sup, II Aw, II 
V,‘AP < A, SUPT II Aw, II + C, II 4, II + 6 II P It 

Taking account of the last inequalities, we write condition (3.8) in the form 

I( AW II -< (A, + eOAI) supr II Am, II + 4 II q II + W, f CA II Zt, II 
Since this inequality is satisfied for all t 20, we can then obtain 

(1 - -4, - sOAs) sup? II b II G 8, II q II + C, + CA II &II (3.9) 

Theorem. Letconditions l"-30 be satisfied for problem (2.6), (3.2). Then if 1 - 
[al(ZhA)l”~ > 0, it follows that condition (3.9) assures Liapunov stability of an annular plate. 

Proof. The max IW 1 enters the stability definition while an upper bound is obtained 

for II Awl]. Therefore, it remains to find the quantity I( AwlI as an upper bound for max Iw 1, 
For finite functions we obtain the inequality t/0/, p.84) 

maxn Iw l<C(Q)IID’~llm,~. h>n (3.10) 
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In the case under consideration I any support on the plate (no free edges) means that 
w=o on the plate boundaries, i.e., the deflections m are finite functions. Furthermore, 
n is the dimensionality of the space and equals two (the plane case), 1 is the order of 
differentiation, also equal to two, and integration in all the calculations was performed 
with the square (the norm was taken in L,),i.e., m = 2 also, therefore, inequality (3.10) 
is satisfied. Here C(n) is determined over the domain of integration, i.e, over the plate 
dimensions. Finally, having used the Bernshtein inequality /7/, we obtain mar0 Iw j <<C(B), 

II Aw II. This and (3.9) ensure Liapunov stability of the plate under consideration. 
The condition of the theorem determines the constraint on the compressive forces since 

h>a follows from 1 - [al(2hA)j5 > 0 ‘, or 

II a” II < I a0 1s < DA [h (1 + I Lo I)l-’ (3.11) 

Remark. To clarify the meaning of the parameter h in (3.11), we turn to (3.6). The 
Cauchy-Bunyakovskii inequality /6/ yields 

\\ [(I+)% + (~-‘~~uJ)~I do < (n (P - Ro2) \\ [&I+ i (~Qo)~]~~w):~' 

By hence deriving the inequality for the inverse quantities, we obtain 

5 < [n (R2 - Ro~)~'* inf, \\ wAAwdo {\\ [(8+)* + (r-U,UJ)*] do} = ho [s (B' - Bc?))'" 

A, is the least eigennumber of the corresponding elastic problem. On the other hand, h>O. 
Indeed, by virtue of /8, p.041 and the Friedrichs-Poincare'inequality a constant C,)O exists 
dependent only on the domain R such that 

{\\ [(6,w)" t (r-‘6,pVl do)‘ir Q C, \\ (A4 dw 

This indeed proves that i.> 0. 

4. A priori estimates of the stresses in a ring. If the plate deflection is 
zero, then a state of stress and strain is realized that is characterizable by the stress 

tensor (7' from (2.4). The equilibrium equations of a plate element in this case will have 
the form /2/ 

6, (Tu.r") +- Bl+urqO - u'c" = O? 6, (TGgO) + 88(J8° + cJ,m" = 0 (4.1) 

Relationships (3.3) will be their boundary conditions. 
We will estimate'IIo'/I in terms of p0 and p. To do this IIu'II will first be estimated in 

terms of II ~‘11, and then IIs'II in terms of PO and p. The first estimate is obtained by sub- 
stituting the stress tensor components 

II d II2 = E (1 + Y)-‘J, + Y (1 + y)-‘/I #III 

J, = J,i ~~~0 (I - N) E,O + 2~~~0 (I - N) ~0,~ + (~~0 (1 - 

Iv) ElqOl doi 

11 uoc12 = lj (u; + uwo)” do = E (1 - v)-‘sl (0; + 
I?,+‘) (1 - A’) (E,’ + Eva) do 

into I/d/I of (3.1). 
Hence taking account of the inequality 

(1 - v) (1 i ,,)-I 11 uo112 i; 11 u0 11% - v (1 + v)~‘II uOII 12 = E (1 + v)-'J, 

we obtain as above 

) 0” Is < E (1 - v)-' (1 + / N, 1) I e” 1 (I, I E” 11 = sup, 11 so 11 (4.2) 

We will now estimate ie” ID in terms of p. and p. We let ~(t, r, (p) denote the radial 
and P(t, r, m) the arc displacements of points Of the plate. We multiply the first equation 

in (4.1) by u, the second by V, add and integrate over the domain Q. Integrating by parts 

taking (3.3) into account, we will have 

(I?, E”) E sl (‘Jr’&,’ -+ 2urcrOEW0 + U~%JO) do = J, 

(E,‘ = 6,u, ZE,~Q = r-14 u + 6,v - r-'v, EaO = r-'u + r-%$v) 

JP = - ‘j [pfiu (R) - pofk (&)I dg, 
0 

Replacing the stress tensor components here by 

J* 3 (1 - v) 1s +,0* + ze,,q+ &,“*)&I 

formjlas (2.11, we Obtain 

+ V js (E,O + Eq”)” do = (4.3) 
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(i - VI sj (erON~10 + 2e,“Ne,” + %‘Ne,“) do + 

v 1s fe,” + co) N (e,’ + e,“) do + (1 - 9) FJ, 

we convert the quantity J, as f0110ws: 

Then according to the Cauchy-Bunyskovskii inequality, we can obtain from (4.3) that 

* 
J2 < J s Nl (t, t) J dr + E-‘I (1 - va) (24% II e” 11 

s = p :t?s - W)% + I P - PO I RO 

Taking account of the inequality J*> (I- v)Ife"II a we will hence have 

(1 - I N, I) 1 e” lb < (1 i- v) 6’ (2n)ll*E 
Together with (4.2) this yields the estimate 

I CT’ 1s < P = (23x)“* (i + v) (1 + I h’x I) 10 - 4 (1 - I Ni 1 )I-‘5 (4.4) 

Using (4.4) to estimate 1, from (3.5) and the result of the theorem, we conclude that 
the plate will be stable under the following condition on the compressive load: 

P q Dh Ih (1 + ( I& I )I-’ (4.5) 

Remarks. lo. If the plate material possesses just the properties lo-Z", then con- 
ditions (3.11) and (4.5) take the respective form 

To prove this fact (2.6) is used. 
2'. The stability conditions (3.11) and (4.5) obtained retain their form even for other 

kinds of plate support. Only the parameter L is found from (3.6) with boundary conditions 
corresponding to the kind of support. 

30 We assume that the plate is loaded in such a manner that the stresses within it are 
constan; 12, 3/. Then the stability conditions are simplified and have the following form. 
We let h--h, denote the minimal eigenvalues of the boundary value problems 

AAw+hAw= 0, AAw+&~'w=O 

AAw + h (r-16,w -t_ r-%?,,z u)) = 0, AAw +- 2&(r-'I?,& = 0 

with boundary conditions corresponding to the kind of support. If a,*= urpD.utso=O, the plate 
is stable for 1 or” I < f (h,); if c-0 = u,o* = 0, it is stable for 1 or0 I <f(h),); if o,* = utmo = 0, it 
is stable for I CT~“[ <f&t; if epr" = ugo = 0, it is stable for 
I L&P. 

[ u~,,o I< f (A,). Here f(i) = Dh [h (i + 

For IL,)=• and po= p the conditions obtained agree with the stability conditions for 
elastic annular plates /2/. 
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POST-CRITICAL BE~AYIOUR OF A LO~GIT~~I~ALLY COMPRESSES ROD FOR 
RIGID L~~~TATr~S ON TtiE DEFLECTION* 

E.I. MIKBAILOVSKII, V.N. TARASOV and D.V. KBOLMOGOROV 

An approach based on the application of optimization methods is developed 
for determining the state of stress and strain of bodies and structures 
with given limitation on the displacement. A model problem of plane 
longitudinal bending of a hinge-supported rod is considered with rigid 
limitations on the deflection. An analytic solution is obtained for this 
problem that extends a well-known solution tothenon-linear case /l/. 
Then, by applyiny the Ritz method to a variational problem and replacing 
the continuous by discrete limitations, the variational problem is trans- 
formed into a non-linear programming problem. The results of numerical 
computations are in good agreement with the analytical solution. A simple 
proof is given for the complete adjacency hypothesis used to obtain the 
latter. The mechanism of the formation of the multiwave bending mode as 
the axial compressive force increases, described in /l/, is confirmed 
by a numerical experiment. 

The problem under consideration is interesting in connection with 
the need to reveal the stable dynamic bending modes of drilling tube 
columns in a borehole. One of the methods of solving this problem is 
based on assumptions about the nature of adjacency of the column to the 
borehole wall or about the column bending mode. An investigation of the 
shape of a cambered axis using assumptions of complete adjacency is made 
in /2/. 

We consider the plane bending of a longitudinally compressed rod located initially along 
the axis of a cylindrical cavity (the radius is A =Z con&) with absolutely rigid walls. Let 
the hinge-clamped ends of the rod remain on the cavity axis during deformation while the 
longitudinal compressive force P retains its magnitude and direction. Under such assumptions, 
the determination of the plane bending mode of the rod reduces to solving the following 
variational problem 

where w, w' and UI* are the deflection function, and its first and second derivatives with 

respect to s, EI is the rod bending stiffness, and 1 is the rod length. 
Furthermore, we assume the force P to be greater than the first critica?. force (P> P*(r)= 

~2~~/~*) and greater than the force for which the rod would touch the wall. We assume here 

that the rod abuts completely on a cavity wall at a certain middle part of length I, - E-221, 
(Fig.1). We call this assumption the hypothesis of total adjacent:?. When there is a section 

of total rectification,the determination of the deflection at each of the curvilinear sections 
(from the hinged end to the first point of tangency) reduces to solving the variational problem 

under the boundary conditions 

w (0) = w” (0) = 0, w (Z1) = A, LL.' (II) = 0 
(3) 
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